Frobenius covariant

In matrix theory, the Frobenius covariants of a square matrix A are matrices Ai associated with the eigenvalues and eigenvectors of A.[1] Each covariant is a projection on the eigenspace associated with λi.

Frobenius covariants are the coefficients of Sylvester's formula, that expresses a function of a matrix f(A) as a linear combination of its values on the eigenvalues of A. They are named after the mathematician Ferdinand Frobenius.

Contents

Formal definition

Let A be a diagonalizable matrix with k distinct eigenvalues, λ1, …, λk. The Frobenius covariant Ai, for i = 1,…, k, is the matrix

 A_i = \prod_{j=1 \atop j \ne i}^k \frac{1}{\lambda_i-\lambda_j} (A - \lambda_j I).

Computing the covariants

The Frobenius covariants of a matrix A can be obtained from any eigendecomposition A = SDS−1, where S is non-singular and D is diagonal with Di,i = λi. If A has no multiple eigenvalues, then let ci be the ith left eigenvector of A, that is, the ith column of S; and let ri be the ith right eigenvector of A, namely the ith row of S−1. Then Ai = ciri.

If A has multiple eigenvalues then Ai = Σj cjrj, where the sum is over all rows and columns associated with the eigenvalue λi.[1]:p.521

Example

Consider the two-by-two matrix:

 A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}.

This matrix has two eigenvalues, 5 and −2. The corresponding eigen decomposition is

 A = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \\ 4 & -3 \end{bmatrix}.

Hence the Frobenius covariants are

 \begin{align}
A_1 &= c_1 r_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \end{bmatrix} = \begin{bmatrix} 3/7 & 3/7 \\ 4/7 & 4/7 \end{bmatrix} \\
A_2 &= c_2 r_2 = \begin{bmatrix} 1/7 \\ -1/7 \end{bmatrix} \begin{bmatrix} 4 & -3 \end{bmatrix} = \begin{bmatrix} 4/7 & -3/7 \\ -4/7 & 3/7 \end{bmatrix}.
\end{align}

References

  1. ^ a b Roger A. Horn and Charles R. Johnson (1991), Topics in Matrix Analysis. Cambridge University Press, ISBN 9780521467131